
CLEMSON UNIVERSITY – INTELLIGENT MATERIALS, SYSTEMS, AND ENVIRONMENTS

ComforTable

The smart solution for nightstands

Charreau Bell, Christopher Felegie, Nivedhitha Giri, Jessica Merino, Bryan Willimon

12/6/2010

Bedside tables to facilitate independence among the older population and rehabilitative patients are non-

existent. The current design creates general-purpose bedside tables that are unwieldy and hard to use.

For this reason, the automated ComforTable has been designed. The system is a unification of a

nightstand with a table that can be delivered from within the nightstand for efficient storage. The

nightstand features a rotating drawer system for maximum storage and organization of small items, as

well as a continuum surface table which is able to sense the user and respond to user needs. The system is

also equipped with artificial intelligence which is able to predict the needs of the user as well as tailor its

actions based on a reward from the user. A prototype has been designed to successfully implement each

of these functions, and is actuated by innovative pneumatic muscles.

1 Introduction and Objectives

Originally conceived as a helper for the elderly, the ComforTable suite has developed into a ubiquitous

system that can be used in a variety of environments. The purpose of the system is two-fold: 1) to

increase user independence by aiding the user in retrieving small items commonly found in a nightstand

or in a room by delivering them via continuum table, and 2) to ensure the user’s comfort with the

ComforTable by creating a system responsive and predictive of user interaction and schedule.

2 Scenario

At 7:00am, 62-year old Shelly awakes from her slumber. She automatically throws her hand towards the

nightstand next to her, fumbling through the clutter of items next to her to find her glasses. Finally, she

finds them by knocking them on the ground. Certainly, she knows that familiar clatter. Groaning as she

painfully pushes herself from the bed, she leans down to pick up her glasses, searching blindly to find her

glasses. Finally, she finds them and begins her day.

Every day has the same schedule; first the glasses at 7am, then the pills from the bathroom at 7:30am.

She entertains herself with leisurely reading of a book from the bookshelf at 8, and so forth throughout

the day.

Already on the brink of being placed in assisted living, Shelly’s fall in the shower seals her fate, as she is

no longer mobile, and is confined to a bed. Without the help of a nurse, simple tasks such as putting

pressure on her hip as she rolls in the bed to reach her glasses, or attempting to retrieve her pills from her

bathroom cabinet is altogether impossible. A few days after her fall, she hears a knock on her door, and

she resignedly waits to be toted to her final assisted living facility, Restful Shores. However, she is

shocked to find her beloved daughter leading two burly men into the room with a large wooden piece of

furniture between them. “Over there – next to the bed,” her daughter instructs.

“Shelby, what is this?” Shelly says with confusion. “I already have a nightstand – the same one I’ve had

for the last 25 years!” Shelby smiles understandingly at her suddenly belligerent mother, and starts

placing each item in the current nightstand into the revolving drawer system of the new nightstand.

“Mom,” she says, “this is a ComforTable. It’s here to retrieve for you everything you need so that you’ll

be able to stay here on your own, or at least with minimal help. All you do is select items from this

touchscreen, and the ComforTable will deliver them. Well, I’ve gotta go; I’m running late for a meeting,

but give it a try and see if you like it.”

Shelly’s frown said just about everything about her attitude towards this new piece of technology. All she

could think to herself was, “What’s this NEW silly thing made by those young whippersnappers? My old

nightstand was just fine!” It was late, so Shelly eventually fell asleep according to her normal routine,

and woke up to attempting to fetch her glasses. Disoriented from the general episode of waking up, her

eye caught view of the touchscreen with the large button that read “glasses.” Throwing her hand towards

it, she pushed the large button. With a soft mechanical whirr, she saw her glasses emerge from the side of

the nightstand on a flexible continuum table. It stopped shortly near her. Shocked from the sudden

emergence of the table, she could barely move. The table seemed to sense her hesitation and gently

arched its position so the glasses were closer to her, as if offering them to her. Cautiously, she took her

glasses from the table and eyed it suspiciously. “Thanks,” she said warily, and was shocked to observe

that the table turned blue, as if it appreciated what she had said. It then returned to the nightstand. Still

skeptical of this new technology, she avoided it for the rest of the day, and went to bed according to her

nightly routine.

The next morning, she woke up with her usual disorientation, but as she opened her eyes, she found the

table offering her the glasses, as if it knew her desires. “Thanks,” she said again, and the table again

glowed blue as if it understood her gratitude. From then on, she began ordering items out of the

nightstand according to her daily routine, and as the days grew on, the nightstand seemed to always

deliver items slightly ahead of the time she needed them. Even better, it seemed to change its actions

based on her feedback; it she rewarded it positively, it glowed and repeated the same actions. If she

rewarded it negatively, it refrained from repeating the same actions.

Several days later, her daughter returned to find her mother happily interacting with the new technology,

sometimes even stroking it as if it was a pet. “Man,” Shelly thought to herself, “Mom looks really happy

with that nightstand. Perhaps even ComforTable.”

3 youTube Link

A demonstration by the system prototype can be seen on the following web address:

http://www.youtube.com/watch?v=PcjWBbOEZrM

4 Source Code

The source code for the control software and the artificial intelligence can be found in Appendix C. The

Arduino source code controlling the ComforTable and nightstand can be found in Appendices D and E,

respectively.

5 Model Implementation

5.1 Overview

The system has been subdivided into three parts: the ComforTable control software (CTCS) and artificial

intelligence (AI), the continuum table, and the nightstand drawer system. The three are connected at two

interfaces: one between the control software and the nightstand, and one between the control software and

the continuum table. A description of the each of the component parts can be found in the following

sections.

http://www.youtube.com/watch?v=PcjWBbOEZrM

5.2 ComforTable and Nightstand Control Software and Artificial

Intelligence

The CTCS has four different components: the user interface, implemented in C++; the Soar Kernel used

to achieve the AI goals of the system; a serial interface to the nightstand to deliver drawers; and a serial

interface to the table to report back the reward given. A flowchart of this information is shown below.

CTCS information flow diagram

Each part of the system will be described in further detail in the following sections. Information about the

Arduino code used to implement the functionality of the continuum table (“OtB Table” in diagram above)

and the nightstand intelligence can be found in Sections 5.3 and 5.4, respectively.

5.2.1 User Interface

The user interface was implemented in C++, and supports the Windows operating system. The

purpose of this interface is to enable the user to select items from the nightstand, but also to

inform the user of events. For example, when the user selects “table,” the system will deliver the

table, and also display the drawer and the compartment in which it is located in the nightstand. It

also has other messages, including that it is waiting to be rewarded for a particular action, or that

the reward has been received. The time is also shown for the user. The user interface is shown in

the diagram below.

ComforTable user interface

5.2.2 Soar Kernel

Developed at the University of Michigan, the Soar is a cognitive architecture designed for

problem-solving applications. By design, it has long-term memory which stores rules, or if-then

statements relating preconditions to actions. For example, in the context of ComforTable, long-

term memory is populated with rules that tell it when to deliver a certain item based on selections

the user has made in the past.

Soar also has short-term memory, which reflects its current state. For example, the created Soar

agent will be able to keep track of what items are or are not in the nightstand, and what has been

delivered. In this way, the agent will know that it can only deliver an item that is located within

the nightstand.

Most powerfully used here are Soar’s built-in learning mechanisms, which include reinforcement

learning and episodic memory. The goal of reinforcement learning is for the agent to learn what

the best action to take is based on a reward that is given to it by the user. In this case, the user

clicks a button which results in a reward of either 0 or 255. Better rewards have higher values,

and thus, the agent will repeat this action more often. An example of this can be seen in the

figure below.

Soar Java Debugger displaying reward values for rules

Seen here is the Soar Java Debugger, which can be most simply thought of as a monitor, or a look

inside of the running Soar kernel. Towards the top of the image, a statement “deliver-items” and

“Money is being delivered” can be seen. This means that a rule has fired, which has selected

money as the item to be delivered. Most interesting about this execution is the symbol “N63”

preceding. This rule was not originally programmed into the system; that is, the agent was able to

write this rule itself based on past actions. Also interesting to observe are all the rules with the

name structure “rl*item-delivery**template*rule**”. These are the reinforcement learning rules

that Soar creates in order to tailor its actions to the user’s rewards.

Episodic memory enables the software to remember what action it took in the past, and therefore,

what action might be available for it to take in the future. This is particularly interesting in the

case of the ComforTable, because any action or set of actions that can be taken by the user can be

used as a trigger to remember some event that occurred in the software’s past. Currently, the

trigger is merely time, so as the software executes, Soar constantly tries to remember what it did

at that last time. However, in the future, this can be implemented for Soar to remember actions,

or anything that can be parameterized by an Arduino. Thus, actions such as the user knocking

their glasses off the nightstand, or the several actions the user takes in succession can be used as

triggers. The figure above illustrates several instances of reinforcement learning and episodic

memory combined; that is, the system will take an action that was not specifically forced by the

user, and will receive a reward. Then, this same remembering of the past should be used again.

Lastly, to reiterate, the power of this artificially intelligent agent is in the fact that the programmer

does not have to explicitly write out every possible event that the user can take so that the system

can appropriately respond. The programmer writes some rules, like deliver-items seen above, and

the system will be able to write some of its own rules to determine in what specific events that it

should take a specific action.

Sample productions and source code can be found in Appendix A of this document. For the full

source, please contact iwalker@clemson.edu, kegreen@clemson.edu, or

charreau.s.bell@gmail.com.

5.2.3 Serial Interfaces

As shown in the block diagram in Section 5.2, two serial interfaces were necessary to

appropriately communicate with the Arduinos controlling the nightstand and the table. In the

current prototype, a number is written to the nightstand Arduino so that it can actuate a

compartment of a drawer to be delivered. As for the serial connection with the continuum table,

after a drawer is delivered, the system waits for 4 seconds to receive a reward. If it does not

detect a reward in those 4 seconds, then the system records a reward of 0 and moves along. This

will be discussed further in Section 6.

5.3 ComforTable Implementation

5.3.1 Physical Construction: Pneumatic Muscles

In order to meet the design constraint of user acceptance and comfort with the technology,

pneumatic motors were chosen to actuate the continuum table. This also resulted in a number of

different configurations and positions of the table to best serve the user. In order to reach these

configurations, pneumatic muscles were constructed according to the procedure outlined in

Appendix A. The table was then built in the method described in Appendix B.

5.3.2 Pneumatic, Electrical, and Software Connections

The air pressure in each of the pneumatic muscles (a.k.a McKibben actuators) is regulated by a

pressure regulator (ITV3010-01N11L4). An air compressor is used as a pressurized air source for

all the actuators. The pressure regulators are connected to a +24V DC power supply and the

control signal is provided from an Arduino microcontroller (Arduino Duemilanove with

ATMega328). The digital output pins (that can be Pulse Width Modulated to get an equivalent

analog voltage) are directly connected to the control inputs of the pressure regulators. The

mailto:iwalker@clemson.edu
mailto:kegreen@clemson.edu
mailto:charreau.s.bell@gmail.com

grounds of the Arduino board and the pressure regulator electrical power supply source are tied

together.

Pressure regulators and pneumatic lines from the air muscles

The basic table movements are obtained by changing the air pressures of the four pneumatic

muscles. The pressure regulators used for this system have a linear voltage-pressure relationship.

With every 1V increase in the control input, the output pressure increases by 13 psi. The control

input can have a maximum voltage of 10V, which corresponds to an air pressure of 130 psi. The

pulse width modulated output from the Arduino can range from 0-5V. This corresponds to values

from 0-255 that has to be coded in the AnalogWrite function. Hence the value to be coded to set a

pressure of x psi in an air muscle is 3.923*x. Since the muscles are not pressurized beyond 40 psi,

the output voltage from the Arduino board is sufficient to control muscle pressure levels using

pressure regulators.

Two IR sensors (Sharp GP2D120A) are connected to the input pins of the Arduino – one is used

to detect the person’s movements below the table so that the table can move upward abruptly if

the person wants to get up quickly from the bed; the other sensor is used to detect if the person

has grabbed an object that has been delivered to the table from the nightstand. The supply and

GND lines of the sensor are connected to the +5V and GND pins of the Arduino board

respectively. The multiplication factor used to convert the values read from the input pin of the

Arduino to voltage is 0.0048828125. This voltage value is converted to distance by the following

conversion: distance = 65*pow(volt1,-1.1).

Breadboard connections for the pressure regulators

A panel consisting of three rows of LEDs is attached to the table on the user’s side. The RED

lights in the panel indicate that the table is morphing to change its current configuration. The

GREEN lights indicate that the table is at rest. The BLUE lights are an indication of the table’s

happy mood when the user gives a reward for its timely actions by patting on a press button. The

press button and the rows of LEDs are interfaced to the Arduino.

LEDs, IR sensor and push button at the side of table IR sensor at the bottom of the table

Arduino

Breadboard

Regulator

Cable

Brown =

+24V

Black = GND

Blue = GND

White =Signal

Electrical connections for sensors and pressure regulators

5.3.3 Table actuation and Scenarios

The table can bend, rotate and curve by pressurizing the four pneumatic muscles to appropriate

pressure levels. Air muscle 1 refers to the muscle present on the top right portion of the table, air

muscle 2 refers to the one on the top left, air muscle 3 refers to the one on the bottom right and air

muscle 4 refers to the one on the bottom left. When the system is powered ON, air muscles 1 and

2 are pressurized to 25 psi so that the table remains horizontal balancing gravity. The table

movements for two different scenarios are explained here along with a brief note on the code that

is used to monitor the sensors to control the table’s movement.

5.3.3.1 First scenario

The nightstand delivers an item that is frequently used by the person as soon as he wakes up in

the morning (eg. Glasses). If the table detects that the person has not retrieved the glasses from

the table in a short period of time, it curves and moves towards the person so that the person can

easily reach for the item. The red lights turn on to indicate that the table is in motion. For the

table to curve and reach the person, the air pressure values in different muscles are tabulated

below,

Air Muscle
Pressure value (in

psi)

1 0

2 30

3 0

4 30

Arduino board

Breadboard1:

24V DC Supply

for the pressure

regulators

Breadboard2:

IR Sensors and

LED

connections

The pressure values are increased in steps to get smoother table movements. After the person

reaches for the item, the table retracts back to its normal position. The red lights turn off and the

green lights turn on again.

5.3.3.2 Second scenario

The table detects movement of the person underneath it and realizes that the person wants to get

up immediately from the bed. In this scenario, the table bends upward quickly in a single step.

The air pressure values in the air muscles are tabulated below,

Air Muscle
Pressure value

(in psi)

1 40

2 40

3 0

4 0

The table then comes to its normal position after a delay (which is programmed to be 10 seconds).

The red lights are turned on until the table comes back to its original position.

At any point of time, the user can reward the table for its intelligent actions by patting on the push

button on the table. In response to this, the blue LEDs in the panel blink twice.

The pressure values coded are slightly different from the values in the table to compensate for the

slight variation in length of the muscles that are being used. Input from a push button is used to

indicate the presence of an item on the table. The reward/feedback is communicated to the central

intelligence serially. The occurrence of the two scenarios and the reward given to the table can be

in any order and can be executed any number of times.

5.4 Nightstand Drawer System Implementation

5.4.1 Components

3 Servo motors (1 standard, 2 continuous)

Breadboard

Arduino ATmega 328 micro controller

Jumper cables

10 gears (5 for each side)

2 long chains

2 dowels in the shape of a boot for the kick-out mechanism

5.4.2 Physical Implementation

The drawer system within the nightstand is designed to deliver small compartments filled with

miscellaneous items used in everyday life. This nightstand is designed to sit beside the bed in a

home or hospital environment. Some of the items in the nightstand will consist of brush, tissues,

glasses, loose change, notepad, etc. When an item is selected to be used, then drawer system will

deliver the entire drawer to the opening on the side and push out a small compartment to the user.

Each drawer consists of 1 to 3 compartments ranging in size and scale and can be used for any

type of storage.

The component within the nightstand that makes up the drawer system consists of 5 gears, 1 long

chain and 1 motor on each side of the nightstand. It also includes an Arduino 328 microcontroller

that controls the left motor and right motor. For each side, 4 of the gears are placed in each

corner of the nightstand to allow for full rotation. The long chain is then moving along all 4 gears

as it is being powered by the remaining 5th gear. The 5th gear is powered by a single continuous

servo motor that drives the single chain holding all of the drawers.

Each drawer is suspended above the chain as to allow free range of motion and to not obstruct

any other drawers or other parts of the moving mechanism. Each drawer contains a wooden

dowel so that it can connect to the moving chain and allow the drawer to stay upright when it is

rotating within the nightstand. A single piece of cardboard is connected to the chain at one end

and the other end contains a hole big enough to allow the ends of the drawer to fit in.

The final piece within the nightstand is the kick-out mechanism. This device is designed to push

a specified compartment onto the table outside of the nightstand so that the user will be able to

extract items from the compartment. The components that make up the kick-out mechanism

consist of 1 motor and 1 thin slat. The thin slat is attached to the motor to resemble a fin or

flipper. It is designed to push along the backside of the compartment without touching the

drawer. This device is placed just above the opening of the nightstand.

5.5 Theoretical Design for Latching Mechanism

The idea for a supporting latching mechanism was a result of the need to support the opposite end of the

table when in its extended position. This supporting device must be able to provide several functions:

 360 degree of rotation – enables the table to move out of the way of the patient

 Telescoping device - adjusts the height of the table above the patient

 Scissoring Mechanism – helps with support of the table when detached from the nightstand

 Rail attached to the bed – aids in the positioning of the table.

Two types of locking mechanisms were proposed in order to determine the optimal device for this

implementation:

 Pin Mechanism – functions by a pin passively inserted into a slot on the underside of the table

 Ballooning Mechanism – the end of the table will expand once inserted into a slit.

The proposed materials to be used in constructing the latching mechanism include:

 Rail – selected to be light weight steel with matte finish for aesthetic appeal

 Receiver Piece – should be light weight steel with matte finish

The following image shows the initial sketches of the balloon locking mechanism and the pin locking

mechanism.

The image below illustrates the intended sequence for extending and locking the table in the opposite side

thereafter.

5.6 Previous Iterations of System Design

The nightstand and table configurations were refined several times before the final design was finalized.

The images below will demonstrate the positive and negative aspects of each of the designs, and how

each was refined to the final concept.

5.6.1 Table Sliding on Hospital Bed Rails

This first concept reflects the general concept of the current drawer system; it features the rotating

compartments to be delivered to the user. However, each drawer must contain several items, and

this could be very confusing to the user. Furthermore, this could result in a more complex

method needed to index each item by the drawer system. This design of the table features a table

sliding across the rails of a bedside table, but this idea was revoked due to its inability to be

removed, caging the user in the bed.

5.6.2 Column Delivery of Nightstand Items

This idea iterated on the design in 5.4.3.2 by adding compartments to the drawers, enabling each

item to be easily localized and indexed by the drawer system. An extra column structure, shown

in green in the image above, was introduced to deliver items from the nightstand to the patient.

However, this idea was completely ignored due to the android-like actions of the column.

5.6.3 Design of Nightstand and Table Compartments

Above is a possible design for the table and nightstand. The table could be hidden inside the

nightstand and could be deployed out. The boxes would be 6" x 6" x 3" (h x w x d), and there

would be 24 of these boxes.

5.6.4 Ideal Nightstand Design

The following images outline a sequence of how the drawer system should work. There should be

a row of 6 drawers, each approximately the size of a medical drawer that would be found in a

hospital. Each drawer has an option to have several different size boxes. There would be a cut

out in the 2 middle panels so the drawers could pop up through it. Then, a mechanism would pop

the box up and then a mechanism will push the box off the drawer and down toward the table that

is extended.

5.6.5 Alternate Physical Appearances of Ideal Nightstand

The following images are renderings of possible topological views of the nightstand. The latter

two reflect the most likely method of implementation, although the table will most likely be much

thinner than displayed in the image.

6 Future Work

6.1 Control Software and Artificial Intelligence

Several improvements could be made in order to maximize the benefits of the artificial intelligence and

CTCS. The first is that the graphical user interface (GUI) should be made more attractive to users –

something they’ll be comfortable looking at as well as increasing usability. Furthermore, the system

should have more inputs from the table or other sensing of the user such that more, richer responses can

be gained from the system. With more inputs, it may be possible for the system to learn sequences of

actions and predict possible actions in that manner. Even further, integrated with medical sensors such as

heart rate or blood pressure monitors, a system aware of the physical state of the user can be established.

This can lead to more responsive reactions to emergency situations, quickly offering the user

counteractive pills such as nitroglycerine, offering water to the patient if their stats suggest dehydration,

or even summoning nurses or doctors in the case of an urgent emergency.

In addition, in order to appropriately decide whether to deliver or not deliver an item, another mechanism

needs to be created, which would be a no-operation (nop) operator. One can see the necessity of this in

the system; all the rewards garnered from the system are rewards, nonetheless. Even if a production has a

low reward score, the system will fire it if it has no alternatives. Thus, the nop operator, which suggests

to do nothing should be proposed simultaneously. This would enable the system to truly choose to not

deliver a certain item based on the garnered reward.

Lastly, the system should have more productions (rules) written for its operation. This would enable a

richer set of template rules for the system to begin with to be able to carry out more complex reasoning.

6.2 Continuum Table

Apart from the conclusion that pneumatic muscles have proven to be very versatile, manageable,

and controllable devices that are simple to make, the ability to use said muscles to control a

continuum surface table has opened many doors for future work in the control and development

of continuum surfaces. To further develop the effects that pneumatic muscles can have on

continuum surfaces, more muscles with different mesh sleevings will be built and tested, for the

key to changing the effect of the muscles lies with the size and pattern of the mesh sleeving. The

effects of changing the diameter of the sleeving has been observed, so the main focus will be on

seeing how different sleeving patterns change how the muscles move. The next step is to build

muscles with mesh sleeving that allows for muscle expansion instead of contraction. It may also

be desirable to explore the effect that different tube sizes have and also explore if there are

lighter parts to make the muscles.

Once different muscles have been built, these muscles can then be placed onto the continuum

surface table; then, one can observe the affect that different muscles have on table movement.

Since there are many different muscles that can be built, there is the potential for the table to take

many different configurations. So, there is plenty of potential work in trying all the different

combinations of muscles and observing the effects they have on table movement. Furthermore,

the placement of the muscles is also key in the table's movement. So, another area of future work

lies in testing different muscle patterns on the table. As of now, the muscles are lying parallel to

each other on the table. It may be desired to observe what happens when the muscles are snaked

or lie in different directions on the table; a bat wing configuration is one which may also be

tested.

The control of the table is another area in which future work can be performed. The table's

actuation is currently controlled by two push buttons and two IR sensors, and the table's

movement is pre-programmed. A more user-activated actuation of the table could be developed.

So, instead of the table moving in a predetermined manner, the table would be able to respond to

the subtle movements of the user; it would be able to "mold" to the person's current position as

well as perform the predetermined motion sequences for certain scenarios. Therefore, more

coding and an increase in the number of sensors would be necessary; the exploration of and use

of different sensors is also possible.

6.3 Nightstand

The drawer and delivery system can be improved by incorporating different types of mechanisms

other than the gear and cable. A robotic arm could be used to extract each drawer/compartment

instead of using a kick-out mechanism. The compartments could be extracted on the top of the

nightstand instead of the table. Currently, the continuous servo motors are able to pull the

weight of the cardboard drawers. In the future, more powerful motors will need to be

incorporated. The drawers could be placed in a stacked position instead of moving around a

ferris wheel style gear system. With stacking compartments, each of the drawers could be

moved within the nightstand by using a grid type map that directs the movement of each drawer.

Each of the compartments could be attached to the side of the nightstand, somewhere on the grid,

and the compartments would be able to maneuver and rearrange in various combinations. This

would incorporate more of an intelligent nightstand that handles navigation within and outside

view. A mobile base would allow the nightstand to perform more tasks instead of staying in a

constant position. The nightstand could be doubled as a “gopher” robot that can grab easy to

manipulate objects that the user needs. The grasping part would be handled by the manipulator

location within the nightstand. These are fruitful areas of research that can be explored further.

Appendix A: Instructions on Construction of Pneumatic Muscles

Supplies:
(1) High-Temperature Silicone Rubber Tubing Soft, 3/8" ID, 1/2" OD, 1/16" Wall

cut to desired length

http://www.mcmaster.com/#5236k15/=9ga04y

PAM Figure 1

(1) Expandable Mesh sleeving cut to desired length

http://www.mcmaster.com/#9142k34/=9ga0bm OR

(1) Heavy Duty Polyester Expandable Mesh Sleeving 5/8’’ ID, 5/16” to 1” Bundle Dia, cut to

desired length

http://www.mcmaster.com/#9142k2/=9o8kcn OR

(1) Choose-A-Color Expandable Mesh Sleeving 1/2" ID, 1/4" to 3/4" Bundle Dia, cut to desired

length

http://www.mcmaster.com/#9284k144/=9o8h55

PAM Figure 2

(1) Compression Tube Fitting Adapter – Female Pipe Adapter

http://www.mcmaster.com/#50915k226/=9ga0h4

PAM Figure 3

(2) Quick Connect – Male Adapter

Ace Hardware – PL-3005 (1/4OD(1/8CTS)x1/4MIP)

PAM Figure 4

http://www.mcmaster.com/#5236k15/=9ga04y
http://www.mcmaster.com/#9142k34/=9ga0bm
http://www.mcmaster.com/#9142k2/=9o8kcn
http://www.mcmaster.com/#9284k144/=9o8h55
http://www.mcmaster.com/#50915k226/=9ga0h4

(1) Compression Tube Fitting Long Nut

http://www.mcmaster.com/#50915k106/=9ga0mh

PAM Figure 5

(1) ½ Flare Plug

Ace Hardware – Part # 41211 (ABP2-8)

PAM Figure 6

(1) ½ Short Rod Nut

Ace Hardware – Part # 41154 (ABN1-8)

PAM Figure 7

(2) Compression Tube Fitting Tube Support – Brass

http://www.mcmaster.com/#50915k246/=9ga0wo

PAM Figure 8

(1) Flexible Polyerethane Tubing cut to necessary length

From lab – ¼’ O.D.

http://www.mcmaster.com/#50915k106/=9ga0mh
http://www.mcmaster.com/#50915k246/=9ga0wo

PAM Figure 9

(1) Tru-Flate Plug: ¼” male NPT

Ace Hardware - #12-225

PAM Figure 10

(2) ¼ HB x ¼ FPT BARB

Ace Hardware - #4014247

PAM Figure 11

(6) PRT #23

Ace Hardware - #41915

PAM Figure 12

Instructions:

1) Cut the silicone rubber tubing to 40 inches.

PAM Figure 13

2) Slide the tubing into the mesh (the third mesh listed above was used for the muscles that

appear in the final project for ECE 868); one must bunch the mesh section by section in

order to move the tubing within the mesh.

PAM Figure 14

PAM Figure 15

3) Pull the tubing and the mesh sleeving at one end of the muscle through the small opening of the

long nut.

4) Place a tube support into the tubing on that same end. It is important to leave a little bit of the

tubing above the edge of the mesh so that a fitting cap can be placed on that end.

PAM Figure 16

PAM Figure 17

5) Screw the quick-connect into the tube fitting adapter (male).

PAM Figure 18

6) Screw the other end of the tube fitting adapter into the long nut (female).

Tube Fitting

Adapter

Quick Connect

PAM Figure 19

PAM Figure 20

7) Pull the tubing and mesh sleeving at the other end of the muscles through the ½ short rod nut; pull

the tubing and sleeving through the rod so that they extend about an inch beyond the rod nut.

Long Nut

PAM Figure 21

8) Slide the PRT #23 over the mesh sleeving (which is covering the tubing) that is extended beyond

the short rod nut.

PAM Figure 22

9) Place the ½ flare plug into the end of the tubing, and then tighten the PRT #23 with a screwdriver

around the mesh; tighten the PRT #23 so that it is tightly around the base of the flare plug.

PAM Figure 23

10) Find the outlet of the pressure source and screw the True-Flat plug into the outlet; then, screw the

BARB into the plug; lastly, attach the hose to the BARB and tighten the PRT #23 around it.

Tighten

PAM Figure 24

11) Place a PRT #23 over the other end of the compressor hose, and place a BARB onto the end of

the hose.

12) Place a quick-connect into the BARB.

13) Feed the Polyurethane tubing into the quick connect.

True Flat Plug

BARB

PRT #23

Pressure

Source Outlet

PAM Figure 25

14) Feed the other end of the Polyurethane tubing into the pressure regulators that are utilized for

muscle control or directly into the quick connects of the muscles.

PAM Figure 26

Notes:

 The inner and outer diameters of the tubing are chosen based on the desired size of the muscles.

 The mesh sleeving inner diameter should match the outer diameter of the tubing for maximum

muscle contraction.

 If the mesh sleeving is cut, the ends must be burnt with a lighter.

Appendix B: Instructions on Construction of Continuum Surface

Table

Supplies:

 1 ½” foam (Wal-Mart)

 1” foam (Target)

 10 ½ ”x32 ½ ” piece of cardboard (lab supplies)

 20 large and 40 small zip ties (Wal-Mart)

 hot glue (Wal-Mart)

 4 pneumatic muscles (see “How to Make Pneumatic Air Muscles” document)

Procedure:

1) Tessellate the cardboard with triangles; half of the cardboard should be tessellated with

larger triangles and the other half with triangles half the size of the larger ones; the

tessellations shown in figure 1 are the larger ones.

 CST Figure 27

2) Cut two 13 ½ ”x35” pieces of the 1 ½” foam.

3) Align the cardboard in the center of one of the foam pieces (make sure that the cardboard

is placed on the side with the egg crate texture), and then place the second piece of foam

on top of the cardboard (also make sure that the egg crate textured side is touching the

cardboard).

 CST Figure 28

4) Use hot glue to secure the foam to the outside edges of the cardboard.

5) Place the pneumatic muscles on top of the foam in their desired positions and outline the

muscles; an example of the outlines and the measurements is shown below in figure 3.

Make sure to align the end of the muscle that connects to the air tubes with the edge of

the foam.

CST Figure 29

6) Once the outlines have been drawn, cut that section of the foam out; steps 5 and 6 are

performed for the foam pieces on both the top and bottom sides of the table.

7) Once the area for the muscles has been cut, secure the remaining foam to the cardboard

with hot glue.

8) Proceed to gather 20 small zip ties, and pull each one through so that a small loop is

formed.

Cardboard fits in

this area

3

3

4

1 ¾

1 ¾

35

33 ½

CST Figure 30

9) On the top side of the table, glue four of these zip ties to the points of the tessellated

triangles in the cardboard in one of the areas where the foam was cut out in step 6; glue

two ties at the top end of the table and two at the bottom end of the table. Measurments

for the zip ties are displayed below in figure 6. Important: make sure that the zip ties are

glued so that the loop is parallel with the side of the table that has the shortest width.

CST Figure 31

Top

Connection

Points

CST Figure 32

10) On the bottom side of the table, repeat step 9. Then, glue two additional zip ties spaced

in the middle section of the table as shown above; do this for both muscles areas (this

adds a total of 4 zip ties to the bottom of the table).

11) Cut sections of the 1” foam that are the same size as the foam areas that had been cut out

in step 6. Then, place the 1” foam sections in the cut out sections as depicted in figure 7.

CST Figure 33

12) Gather 20 large zip ties.

13) For each zip tie that was glued in steps 9 and 10, feed the leading end of a large zip tie

through the loop. Then, feed that leading end up through the 1” foam piece that

corresponds to that set of zip ties. Next, feed that point back down through the foam.

Lastly, tie the zip tie tightly.

14) Glue the foam to the cardboard.

17 ½

in.

5 in.

2 ½ in.

6 in.

2 ½ in.

5 ½ in. 6 in. 6 in.

This depicts the spacing of the

extra connections on the

underside of the table.

1” foam
1 ½”

foam

15) Place the pneumatic muscles on top of the 1” foam areas that now have the zip ties

fasteners; again, ensure that the end of the muscles that have the quick connects are at the

edge of the table.

16) Gather 20 small zip ties.

17) For each zip tie connector in the foam, feed one end of a small zip tie through the

braiding on the mesh sleeve parallel to the end pieces of the muscles. Then, feed the end

of the zip tie through the zip tie connector in the foam. Lastly, pull the zip tie tightly.

Figure 8 shows the end result of this step.

CST Figure 34

Zip Tie

Connector

Point of

connection

through the

mesh for the

small zip tie

Appendix C: ComforTable and Nightstand Control Software –

Relevant Code

Example production proposing and apply operator to deliver an item to the user

#propose*deliver-items proposes that a certain item should be delivered out of

the nightstand. It first tests that there is some item and records the time

of day for later user in the rule. It also tests that the user requested the

item, and the item hasn’t already been delivered. It lastly tests that the

Table is already present, because if it isn’t the system will not deliver the

item before it. If all these conditions are met, then the system suggests

that a certain item should be delivered.

sp {nightstand-productions*propose*deliver-items

 (state <s> ^name nightstand-productions ^io.input-link <il>)

 (<il> ^item <reqitem> ^time-of-day <tod>)

 (<reqitem> ^item-location requested ^name <itemname>)

 (<s> -^items-present <itemname>)

 (<s> ^items-present Table)

-->

 (<s> ^operator <op> +)

 (<op> ^name deliver-items

 ^req-item <reqitem>

 ^at-time <tod>)

}

#The action of apply*deliver-items is to deliver the items that have been

proposed by the above rule. As can be seen beneathe the arrow, it changes

Soar’s current knowledge of the situation by adding the item to its internal

list of “items-present,” and then writes the relevant information back to the

C++ program controlling the GUI. As the information is cycled in, it is

processed and the appropriate steps are taken.

sp {apply*deliver-items

 (state <s> ^operator <op> ^io.output-link)

 (<op> ^name deliver-items

 ^req-item <reqitem>

 ^at-time <tod>)

 (<reqitem> ^compartment <comp> ^drawer <myd> ^name <itemname>)

-->

 (<s> ^items-present <itemname>)

 (<reqitem> ^called-at <tod>)

 (^item <reqitem>)

 (<reqitem> ^my-d <myd> ^my-comp <comp> ^name <itemname>)

 (write <itemname> | is being delivered. | (crlf))

}

Nightstand Brain.cpp – Code interfacing with Soar Kernel and Table for Reward

#include "NightstandBrain.h"

#include "resource.h"

#include "utility_functions.h"

#include "Serial.h"

sml::Agent* pAgent;

//Serial TableComm;

//Serial NightstandComm;

std::string rewardStatus;

sml::StringElement *pWME1e, *pWME2e, *pWME3e, *pWME4e, *pWME5e, *pWME6e, *pWME7e, *pWME8e,

*pWME9e, *pWME10e, *pWME11e, *pWME12e;

Serial TablePort(tstring(L"COM9"), 9600);

NightstandBrain::NightstandBrain(void):lastWMEno(0),outputID(0),TimeCounter(0)

{

 rewardStatus = "not_app";

 pKernel = Kernel::CreateKernelInNewThread("SoarKernelSML");

 if (pKernel->HadError())

 {

 //throw error

 }

 pAgent = pKernel->CreateAgent("Nightstand Helper");

 if (pKernel->HadError())

 {

 //throw error

 }

 std::string cmd = "learn --enable";

 char const* pResult = pKernel->ExecuteCommandLine(cmd.c_str(), pAgent->GetAgentName());

 cmd = "set-stop-phase --before --input";

 pResult = pKernel->ExecuteCommandLine(cmd.c_str(), pAgent->GetAgentName());

 cmd = "rl --set learning on";

 pResult = pKernel->ExecuteCommandLine(cmd.c_str(), pAgent->GetAgentName());

 cmd = "epmem --set learning on";

 pResult = pKernel->ExecuteCommandLine(cmd.c_str(), pAgent->GetAgentName());

 cmd = "epmem --set database file";

 pResult = pKernel->ExecuteCommandLine(cmd.c_str(), pAgent->GetAgentName());

 cmd = "epmem --set path C:/Documents and Settings/Charreau/My Documents/ECE 868 - Architectural

Robotics/Project 2 Files/Nightstand Intelligence/SMARTStand/SMARTStand Productions/Episodes";

 pResult = pKernel->ExecuteCommandLine(cmd.c_str(), pAgent->GetAgentName());

 cmd = "epmem --set trigger dc";

 pResult = pKernel->ExecuteCommandLine(cmd.c_str(), pAgent->GetAgentName());

 cmd = "epmem --set phase selection";

 pResult = pKernel->ExecuteCommandLine(cmd.c_str(), pAgent->GetAgentName());

 bool result = pAgent->Agent::SpawnDebugger(12121, "C:\\Soar-Suite-9.3.0-win-x86\\");

 pAgent->LoadProductions("C://Documents and Settings//Charreau//My Documents//ECE 868 - Architectural

Robotics//Project 2 Files//Nightstand Intelligence//SMARTStand//SMARTStand Productions//nightstand-

productions.soar");

 if (pAgent->HadError())

 {

 TRACE("\n\n\nLoad Productions Failed.\n\n\n");

 }

 pInputLink = pAgent->GetInputLink() ;

 pID1 = pAgent->CreateIdWME(pInputLink, "item");

 pWME1a = pAgent->CreateStringWME(pID1, "name", "Table");

 pWME1b = pAgent->CreateIntWME(pID1, "drawer", 1);

 pWME1c = pAgent->CreateIntWME(pID1, "compartment", 1);

 pWME1d = pAgent->CreateStringWME(pID1, "time-to-deliver", "nil");

 pWME1e = pAgent->CreateStringWME(pID1, "item-location", "in");

 pID2 = pAgent->CreateIdWME(pInputLink, "item");

 pWME2a = pAgent->CreateStringWME(pID2, "name", "Jewelry");

 pWME2b = pAgent->CreateIntWME(pID2, "drawer", 1);

 pWME2c = pAgent->CreateIntWME(pID2, "compartment", 2);

 pWME2d = pAgent->CreateStringWME(pID2, "time-to-deliver", "nil");

 pWME2e = pAgent->CreateStringWME(pID2, "item-location", "in");

 pID3 = pAgent->CreateIdWME(pInputLink, "item");

 pWME3a = pAgent->CreateStringWME(pID3, "name", "Work-Items");

 pWME3b = pAgent->CreateIntWME(pID3, "drawer", 1);

 pWME3c = pAgent->CreateIntWME(pID3, "compartment", 3);

 pWME3d = pAgent->CreateStringWME(pID3, "time-to-deliver", "nil");

 pWME3e = pAgent->CreateStringWME(pID3, "item-location", "in");

 pID4 = pAgent->CreateIdWME(pInputLink, "item");

 pWME4a = pAgent->CreateStringWME(pID4, "name", "Pens");

 pWME4b = pAgent->CreateIntWME(pID4, "drawer", 2);

 pWME4c = pAgent->CreateIntWME(pID4, "compartment", 1);

 pWME4d = pAgent->CreateStringWME(pID4, "time-to-deliver", "nil");

 pWME4e = pAgent->CreateStringWME(pID4, "item-location", "in");

 pID5 = pAgent->CreateIdWME(pInputLink, "item");

 pWME5a = pAgent->CreateStringWME(pID5, "name", "Book");

 pWME5b = pAgent->CreateIntWME(pID5, "drawer", 2);

 pWME5c = pAgent->CreateIntWME(pID5, "compartment", 2);

 pWME5d = pAgent->CreateStringWME(pID5, "time-to-deliver", "nil");

 pWME5e = pAgent->CreateStringWME(pID5, "item-location", "in");

 pID6 = pAgent->CreateIdWME(pInputLink, "item");

 pWME6a = pAgent->CreateStringWME(pID6, "name", "Glasses");

 pWME6b = pAgent->CreateIntWME(pID6, "drawer", 2);

 pWME6c = pAgent->CreateIntWME(pID6, "compartment", 3);

 pWME6d = pAgent->CreateStringWME(pID6, "time-to-deliver", "nil");

 pWME6e = pAgent->CreateStringWME(pID6, "item-location", "in");

 pID7 = pAgent->CreateIdWME(pInputLink, "item");

 pWME7a = pAgent->CreateStringWME(pID7, "name", "Family-Pictures");

 pWME7b = pAgent->CreateIntWME(pID7, "drawer", 3);

 pWME7c = pAgent->CreateIntWME(pID7, "compartment", 1);

 pWME7d = pAgent->CreateStringWME(pID7, "time-to-deliver", "nil");

 pWME7e = pAgent->CreateStringWME(pID7, "item-location", "in");

 pID8 = pAgent->CreateIdWME(pInputLink, "item");

 pWME8a = pAgent->CreateStringWME(pID8, "name", "Bible");

 pWME8b = pAgent->CreateIntWME(pID8, "drawer", 3);

 pWME8c = pAgent->CreateIntWME(pID8, "compartment", 2);

 pWME8d = pAgent->CreateStringWME(pID8, "time-to-deliver", "nil");

 pWME8e = pAgent->CreateStringWME(pID8, "item-location", "in");

 pID9 = pAgent->CreateIdWME(pInputLink, "item");

 pWME9a = pAgent->CreateStringWME(pID9, "name", "Journal");

 pWME9b = pAgent->CreateIntWME(pID9, "drawer", 3);

 pWME9c = pAgent->CreateIntWME(pID9, "compartment", 3);

 pWME9d = pAgent->CreateStringWME(pID9, "time-to-deliver", "nil");

 pWME9e = pAgent->CreateStringWME(pID9, "item-location", "in");

 pID10 = pAgent->CreateIdWME(pInputLink, "item");

 pWME10a = pAgent->CreateStringWME(pID10, "name", "Pills");

 pWME10b = pAgent->CreateIntWME(pID10, "drawer", 4);

 pWME10c = pAgent->CreateIntWME(pID10, "compartment", 1);

 pWME10d = pAgent->CreateStringWME(pID10, "time-to-deliver", "nil");

 pWME10e = pAgent->CreateStringWME(pID10, "item-location", "in");

 pID11 = pAgent->CreateIdWME(pInputLink, "item");

 pWME11a = pAgent->CreateStringWME(pID11, "name", "Money");

 pWME11b = pAgent->CreateIntWME(pID11, "drawer", 4);

 pWME11c = pAgent->CreateIntWME(pID11, "compartment", 2);

 pWME11d = pAgent->CreateStringWME(pID11, "time-to-deliver", "nil");

 pWME11e = pAgent->CreateStringWME(pID11, "item-location", "in");

 pID12 = pAgent->CreateIdWME(pInputLink, "item");

 pWME12a = pAgent->CreateStringWME(pID12, "name", "Checkbook");

 pWME12b = pAgent->CreateIntWME(pID12, "drawer", 4);

 pWME12c = pAgent->CreateIntWME(pID12, "compartment", 3);

 pWME12d = pAgent->CreateStringWME(pID12, "time-to-deliver", "nil");

 pWME12e = pAgent->CreateStringWME(pID12, "item-location", "in");

 //pID5 = pAgent->CreateIdWME(pInputLink, "time");

 //pWME17 = pAgent->CreateIntWME(pInputLink, "time-of-day", GetTimeInMinutes());

 pWMEA = pAgent->CreateIntWME(pInputLink, "time-of-day", TimeCounter*30+420);

 pWMER = pAgent->CreateIntWME(pInputLink, "reward", 0);

 pAgent->Commit();

 int outputNotifications=0;

 outputID = pAgent->RegisterForOutputNotification(HandleOutputEvent, &outputNotifications);

}

NightstandBrain::~NightstandBrain(void)

{

 pKernel->Shutdown();

 delete pKernel;

}

void NightstandBrain::ResetLocations(void)

{

 pAgent->Update(pWME1e, "in");

 pAgent->Update(pWME2e, "in");

 pAgent->Update(pWME3e, "in");

 pAgent->Update(pWME4e, "in");

 pAgent->Update(pWME5e, "in");

 pAgent->Update(pWME6e, "in");

 pAgent->Update(pWME7e, "in");

 pAgent->Update(pWME8e, "in");

 pAgent->Update(pWME9e, "in");

 pAgent->Update(pWME10e, "in");

 pAgent->Update(pWME11e, "in");

 pAgent->Update(pWME12e, "in");

 pAgent->Commit();

 pAgent->RunSelf(4);

}

void NightstandBrain::UpdateTime(void)

{

 TimeCounter++;

 pAgent->Update(pWMEA, TimeCounter*30+420);

 pAgent->RunSelf(3);

 if(TimeCounter==24)

 TimeCounter=-1;

}

void NightstandBrain::RequestItemtoWM(UINT nID)

{

 if(nID==Table_Button)

 {

 pAgent->Update(pWME1e, "requested");

 }

 if(nID==Jewelry_Button)

 {

 pAgent->Update(pWME2e, "requested");

 }

 if(nID==Bible_Button)

 {

 pAgent->Update(pWME8e, "requested");

 }

 if(nID==Books_Button)

 {

 pAgent->Update(pWME5e, "requested");

 }

 if(nID==Checkbook_Button)

 {

 pAgent->Update(pWME12e, "requested");

 }

 if(nID==Glasses_Button)

 {

 pAgent->Update(pWME6e, "requested");

 }

 if(nID==Pics_Button)

 {

 pAgent->Update(pWME7e, "requested");

 }

 if(nID==WorkDocs_Button)

 {

 pAgent->Update(pWME3e, "requested");

 }

 if(nID==Pens_Button)

 {

 pAgent->Update(pWME4e, "requested");

 }

 if(nID==Journal_Button)

 {

 pAgent->Update(pWME9e, "requested");

 }

 if(nID==Pills_Button)

 {

 pAgent->Update(pWME10e, "requested");

 }

 if(nID==Money_Button)

 {

 pAgent->Update(pWME11e, "requested");

 }

 pAgent->RunSelf(3);

}

void NightstandBrain::FixItemLocations(std::string name)

{

 if(name == "Table")

 pAgent->Update(pWME1e, "out");

 else if(name =="Jewelry")

 pAgent->Update(pWME2e, "out");

 else if(name =="Work-Items")

 pAgent->Update(pWME3e, "out");

 else if(name =="Pens")

 pAgent->Update(pWME4e, "out");

 else if(name =="Book")

 pAgent->Update(pWME5e, "out");

 else if(name =="Glasses")

 pAgent->Update(pWME6e, "out");

 else if(name =="Family-Pictures")

 pAgent->Update(pWME7e, "out");

 else if(name =="Bible")

 pAgent->Update(pWME8e, "out");

 else if(name =="Journal")

 pAgent->Update(pWME9e, "out");

 else if(name =="Pills")

 pAgent->Update(pWME10e, "out");

 else if(name =="Money")

 pAgent->Update(pWME11e, "out");

 else if(name =="Checkbook")

 pAgent->Update(pWME12e, "out");

}

void NightstandBrain::HandleOutputEvent(void* pUserData, Agent* pAgent)

{

 rewardStatus = "waiting_on";

 TRACE("\n IT WORKED!!!\n");

 int numberCommands = pAgent->GetNumberCommands();

 Identifier* pCommand;

 int i, j, numchars =0;

 WMElement* pID;

 for(i=0; i<numberCommands; i++)

 {

 /* Command so we can add status complete */

 pCommand = pAgent->GetCommand(i);

 const char* name = pCommand->GetParameterValue("name");

 pCommand->AddStatusComplete();

 /* Fix "item-location" WMEs to OUT */

 NightstandBrain::FixItemLocations(name);

 /* Write to the nightstand the drawers that need to be delivered. */

 char buffer[10];

 int numBytes=0, reward=0;

 int start_time=GetTimeInSeconds();

 int fin_time = start_time;

 int time_to_wait = 4;

 while(fin_time - start_time < time_to_wait)

 {

 numBytes = TablePort.read(buffer, 10, false);

 while(numBytes<=0 && fin_time-start_time < time_to_wait)

 {

 numBytes = TablePort.read(buffer, 10, false);

 fin_time=GetTimeInSeconds();

 if(numBytes>0)

 break;

 }

 }

 reward = atoi(buffer);

 if(reward>0)

 {

 rewardStatus = "received";

 }

 pID = (pAgent->GetInputLink())->FindByAttribute("reward", 0);

 pAgent->Update(pID->ConvertToIntElement(), reward);

 pAgent->ClearOutputLinkChanges();

 pAgent->Commit();

 /* Run self for 5 decision cycles */

 pAgent->RunSelf(5);

 /* Cycle a few times to get the status complete and output-link clearing in order */

 //pAgent->RunSelf(3);

 }

 //rewardStatus = "received";

}

std::string NightstandBrain::GetRewardStatus(void)

{

 return rewardStatus;

}

void NightstandBrain::SetRewardStatus(std::string inc)

{

 rewardStatus = inc;

}

Appendix D: ComforTable Delivery and Movement Source Code

//Pressure regulator inputs

int outPin1 = 3;

int outPin2 = 6;

int outPin3 = 9;

int outPin4 = 10;

//LEDs

int red = 4;

int green = 5;

int blue = 8;

//IR sensors

int sense1 = 0;

int sense2 = 2;

//button press

int Press = 2;

int feedback = 0;

//muscle pressures

int muscle1=98;

int muscle2=80;

int muscle3=0;

int muscle4=0;

float volt1=0,volt2=0, dist1=0,dist2=0;

int fl=0;

int pressval=0,feed=0;

float count1,count2,count3,count4;

int j;

void setup()

{

 Serial.begin(9600);

 analogWrite(outPin1,muscle1);

 analogWrite(outPin2,muscle2);

 analogWrite(outPin3,muscle3);

 analogWrite(outPin4,muscle4);

 delay(15000);

 count1=count2=count3=count4=0.0;

 pinMode(red,OUTPUT);

 pinMode(green,OUTPUT);

 pinMode(blue,OUTPUT);

 pinMode(Press,INPUT);

 pinMode(feedback,INPUT);

 digitalWrite(green,HIGH);

}

void loop()

{

 int i;

 // first event monitoring

 pressval=digitalRead(Press);

 if(pressval==LOW)

 {

 int senseflag=0;

 //waiting for the user to pick the glasses

 for(i=0;i<5000;i++)

 {

 volt1 = analogRead(sense1)*0.0048828125;

 dist1 = 65*pow(volt1,-1.1);

 if(dist1<40)

 {

 senseflag=1;

 break;

 }

 }

 //curving movement

 if(senseflag!=1)

 {

 digitalWrite(green,LOW);

 digitalWrite(red,HIGH);

 for(j=1;j<=10;j++)

 {

 count1=count1-9.8;

 count2=count2+4;

 count4=count4+12;

 analogWrite(outPin1,muscle1+(int)count1);

 analogWrite(outPin2,muscle2+(int)count2);

 analogWrite(outPin3,muscle3);

 analogWrite(outPin4,muscle4+(int)count4);

 delay(500);

 }

 //waiting for the user to pick the glasses

 while(senseflag!=1)

 {

 volt1 = analogRead(sense1)*0.0048828125;

 dist1 = 65*pow(volt1,-1.1);

 if(dist1<40)

 {

 senseflag=1;

 }

 }

 for(j=1;j<=10;j++)

 {

 count1=count1+9.8;

 count2=count2-4;

 count4=count4-12;

 analogWrite(outPin1,muscle1+(int)count1);

 analogWrite(outPin2,muscle2+(int)count2);

 analogWrite(outPin3,muscle3);

 analogWrite(outPin4,muscle4+(int)count4);

 delay(500);

 }

 digitalWrite(red,LOW);

 delay(2000);

 digitalWrite(green,HIGH);

 delay(2000);

 }

 count1=count2=count3=count4=0.0;

 }

 //sensing for upward movement

 volt2 = analogRead(sense2)*0.0048828125;

 dist2 = 65*pow(volt2,-1.1);

 if(dist2<90)

 {

 digitalWrite(green,LOW);

 digitalWrite(red,HIGH);

 for(j=1;j<=10;j++)

 {

 count1+=6.2;

 count2+=7;

 analogWrite(outPin1,muscle1+(int)count1);

 analogWrite(outPin2,muscle2+(int)count2);

 analogWrite(outPin3,muscle3);

 analogWrite(outPin4,muscle4);

 delay(50);

 }

 delay(10000);

 for(j=1;j<=10;j++)

 {

 count1-=6.2;

 count2-=7;

 analogWrite(outPin1,muscle1+(int)count1);

 analogWrite(outPin2,muscle2+(int)count2);

 analogWrite(outPin3,muscle3);

 analogWrite(outPin4,muscle4);

 delay(1000);

 }

 fl=0;

 digitalWrite(red,LOW);

 digitalWrite(green,HIGH);

 }

 count1=count2=count3=count4=0.0;

 //reward and response

 feed=digitalRead(feedback);

 if(feed==LOW)

 {

 Serial.write(255); // communicating the reward to central intelligence

 digitalWrite(green,LOW);

 digitalWrite(blue,HIGH);

 delay(1000);

 digitalWrite(blue,LOW);

 delay(1000);

 digitalWrite(blue,HIGH);

 delay(1000);

 digitalWrite(blue,LOW);

 delay(1000);

 digitalWrite(green,HIGH);

 }

 }

Appendix E: Nightstand Drawer System Source Code

#include <Servo.h>

int servoPin1 = 7;

int servoPin2 = 6;

Servo servoPin3;

int buttonPin1 = 2;

int buttonPin2 = 3;

int buttonPin3 = 4;

char startSignal;

int numBytes=0;

void setup()

{

 pinMode(servoPin1,OUTPUT);

 pinMode(servoPin2,OUTPUT);

 pinMode(buttonPin1,INPUT);

 pinMode(buttonPin2,INPUT);

 pinMode(buttonPin3,INPUT);

 servoPin3.attach(10);

 servoPin3.write(10);

 Serial.begin(9600);

 Serial.flush();

 pinMode(13, OUTPUT);

}

void blink()

{

 digitalWrite(13,HIGH);

 delay(1000);

 digitalWrite(13, LOW);

 delay(1000);

}

int state1=0;

int state2=0;

int state3=0;

int temp;

void Move();

void loop()

{

 state1=digitalRead(buttonPin1);

 state2=digitalRead(buttonPin2);

 state3=digitalRead(buttonPin3);

 numBytes = Serial.available();

 if(numBytes>0)

 {

 //received signal from AI

 startSignal = Serial.read();

 if(int(startSignal)>-1)

 {

 Move();

 }

 }

 if(state1==HIGH)

 {

 for (temp = 0; temp <= 4; temp++)

 {

 digitalWrite(servoPin1,HIGH);

 delayMicroseconds(2000); // 1.8ms

 digitalWrite(servoPin1,LOW);

 digitalWrite(servoPin2,HIGH);

 delayMicroseconds(1000); // 1.8ms

 digitalWrite(servoPin2,LOW);

 delay(20);

 }

 }

 else if(state2==HIGH)

 {

 for (temp = 0; temp <= 4; temp++)

 {

 digitalWrite(servoPin1,HIGH);

 delayMicroseconds(1000); // 1.2ms

 digitalWrite(servoPin1,LOW);

 digitalWrite(servoPin2,HIGH);

 delayMicroseconds(2000); // 1.2ms

 digitalWrite(servoPin2,LOW);

 delay(20);

 }

 }

 else

 {

 digitalWrite(servoPin1,HIGH);

 digitalWrite(servoPin2,HIGH);

 delayMicroseconds(1500); // 1.5ms

 digitalWrite(servoPin1,LOW);

 digitalWrite(servoPin2,LOW);

 delay(20); // 20ms

 }

 if(state3==HIGH)

 {

 Move();

 }

}

void Move()

{

 //move drawer forward

 for (temp = 0; temp <= 30; temp++)

 {

 digitalWrite(servoPin1,HIGH);

 delayMicroseconds(2000); // 1.8ms

 digitalWrite(servoPin1,LOW);

 digitalWrite(servoPin2,HIGH);

 delayMicroseconds(1000); // 1.8ms

 digitalWrite(servoPin2,LOW);

 delay(20);

 }

 delay(1000);

 //kick compartment out

 for(temp = 10; temp < 110; temp += 2)

 {

 servoPin3.write(temp);

 delay(15);

 }

 delay(500);

 for(temp = 110; temp >= 10; temp -= 2)

 {

 servoPin3.write(temp);

 delay(15);

 }

 delay(1000);

 //move drawer backward

 for (temp = 0; temp <= 30; temp++)

 {

 digitalWrite(servoPin1,HIGH);

 delayMicroseconds(1000); // 1.8ms

 digitalWrite(servoPin1,LOW);

 digitalWrite(servoPin2,HIGH);

 delayMicroseconds(2000); // 1.8ms

 digitalWrite(servoPin2,LOW);

 delay(20);

 }

}

